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Introduction

. The elastic behavior of a rubber layer sandwiched between, and
"y bonded to, two rigid spherical surfaces is of interest for at least

two reasons. Structures of this type are used as flexible mounts and

ﬁ cushioning devices, and design engineers need to be able to estimate

E the stiffness and the stresses set up within them. And they

) constitute a model of particle-filled composites, in which spherical

E particles are dispersed in a softer elastic medium. In this case a

IR

3' knowledge of the stiffness and stress distribution may provide

;

¥ insights into the phenomenon of reinforcement.

% Elastic behavior under small compressions (and, equivalently,

§ under small tensile deformations) has been analyzed previously, using
" some rather drastic approximations (1). The rubber was assumed to be
g linearly-elastic and incompressible in bulk, and the compressive force
§ was assuﬁed to consist of two terms : one due to simple compression of
" the layer, and a second érising from a hydrostatic pressure P set up
& as a result of the restraints at the bonded surfaces, where P was a

g function only of the lateral distance of a point in the layer from the
. central axis of the system. We now present a more detailed and

.% accurate study of the stresses and deformations set up by compression
§E or extension of the layer, using finite element methods (FEM) and not
s invoking the condition of incompressibility. Instead, values of

g Poi;son’s ratio lying between 0.45 and 0.5 have been employed,

f; covering the widest range likely to be encountered with rubber

e formulations. A typical rubber vulcanizate has a value of Young’s

%
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3
(tensile) modulus E between about 2 and about 10 MPa, and a much ;ﬁ
larger modulus K of bulk compression, of about 1.1 GPa (3). Thus, T?
Poisson’s ratio ¢, given by ~€
v = (1/2) - E/6K (1)
ranges from about 0.4985 for relatively stiff compounds to about '§
0.4997 for relatively soft ones. Qi
In addition, the distribution of pressure throughout the iﬁ
thickness of the rubber layer has been calculated, whereas, before, g?
the approximate theory only yielded a uniform value. §§
These results have implications for the mode of fracture both of i;
bonded rubber layers and of filled rubber and other particulate ﬁ
composites. Failure of rubber is known to take place where, and when, $
a triaxial tension (negative hydrostatic pressure) is set up that 'é
exceeds a critical value, given by about 5E/6, where E is Young's te
modulus (4-6). Under these circumstances, any small spherical cavity :}
that is present within the rubber will expand indefinitely, i.e., ’;
until the rubber around it reaches its maximum extensibility. Then ~$
the rubber will tear open to create a large internal crack. Thus, a %?
crucial question for elastomeric composites is : Under what &
circumstances and at what locations is this critical state likely to &.
be reached ? %.
A second question is : In what direction will the crack, once ?
formed, tend to propagate ? If it grows across the sample, then it }
will result in rupture. If, on the other hand, it grows parallel to :
the axis of the sample, then it will not necessarily lead to rupture. »ﬁ
'l
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Some preliminary conclusions on these points are reached here on the

basis of the calculated stress distributions.
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2. Finite Element Analysis

A sketch of the model structure is shown in Figure 1. Stress ?

¢

distributions within the rubber layer were calculated using the ADINA E
code (7), assuming that the structure was cylindrically symmetrical, f
and that the rubber was linearly-elastic, isotropic, and nearly ﬁ
incompressible in bulk, with values of Poisson’s ratio, v, between %
0.45 and 0.4983. The two spheres were made effectively rigid by 3
giving them a value of Young’'s modulus of 10° times that of the ]
rubber. ﬁ
Ten equal elements were employed vertically, between the surface g
bonded to one of the spheres and the center line of the rubber layer. ﬁ
Ten elements of gradually increasing width were employed laterally, ﬁﬁ
between the cylindrical axis and the free surface, as shown ';
schematically in Figure 1. Values of stress were calculated by taking %
an average over four integration points of the eight-node 'q
axi-symmetric elements. ‘g
When an axial force F was applied to the spheres to compress or é
stretch the layer bonded between them, Figure 1, the FEM computations ﬁl
yielded corresponding values for the displacement &, axial stress g, f‘
radial stress, - J tangential stress 9y and hydrostatic tension, -_P, '@
where o
- P = (0,+ 0.+ 0,)/3 (2) :

These results are reported here for a wide range of layer thicknesses ;§
and for various values of Poisson’s ratio, p. ;
R
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3. Results and discussion
(i) Stiffness of a bonded layer
Values of the computed compression or tensile stiffness for a

bonded rubber layer are plotted in Figure 2 against the corresponding
value of Poisson’s ratio for the rubber. They are given in reduced
form, as the dimensionless ratio, F/SDE, for selected values of the
ratio h/D of the distance h between the spheres to the sphere diameter
D.

As the results given in Figure 2 show, the stiffness of thin
layers is extremely sensitive to the value of Poisson’s ratio, even
when it is quite close to 0.5, corresponding to complete
incompressibility. For example, for a layer with a thickness ratio
h/D of 0.01, the stiffness is reduced by nearly 70 percent in
comparison with the result for an incompressible material, when p =
0.45. Even for a value of y of 0.49, close to the incompressibility
limit, the computed stiffness is still about 40 percent less than the
value for a truly incompressible material. On the other hand, the
stiffness of thicker layers is much less sensitive to small
departures from complete incompressibility (Figure 2).

By extrapolation to ¢ = 0.5, values of the stiffness of thin

layers were obtained for comparison with those deduced previously from

an approximate theoretical treatment for incompressible layers (1):

F/SDE = (n/8)[ Aln{A/(A-1)] - 1 + (1/2A) + [1/(A-1)] ] (3)
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where A = 1 + (h/D). This comparison is made in Table 1 and Figure 3.

The extrapoclated results are seen to be in close agreement with the
approximate theory over the entire range of rubber layer thickness.
The maximum difference is about 6% , when the rubber layer thickness
is relatively large, h/D = 0.2. Thus, the approximate theory is
surprisingly successful in predicting the stiffness of thin

incompresible rubber layers.

Because the approximate theory gave results in good agreement
with experimentally-measured compression stiffnesses for bonded rubber
layers (1), we can conclude that the numerical calculations are also

in good agreement with experiment. This comparison is included in

Figure 3.
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(ii) Stress distribution within the layer

i Values of the hydrostatic pressure P for compressed layers, or

o
8,
N
.$ triaxial tension (negative hydrostatic pressure) for layers subjected
!"
to tensile loads, were computed by FEM, using Equation 2. Maximum
Cf
% values were found to be developed on the central axis. Results for
)
a the layer center are plotted in Figure 4 against the value of
¢
'\
Poisson’s ratio, ¢y, of the rubber. They are seen to be quite
,I‘
ﬁ$ sensitive to small departures from complete incompressibility,
e
)
ﬁ: especially for thin layers,as found before for the layer stiffness,
t!;.
g Figure 2. (Note that logarithmic scales are employed in Figure 4, in
N
a view of the wide range of pressures encountered.) And, again, the
4!
() .
‘% results for thicker rubber layers were less sensitive to the exact
RO
()
" value of Poisson’s ratio.
¥
Qg By extrapolating to a value for v of 0.5, corresponding to a
L
. completely incompressible rubber layer., results were obtained for
! direct comparison with the predictions of the approximate theoretical
"
k analysis (1), where the total pressure is assumed to be made up of two
l‘|
?} components, the first given by simple compression of an (unbonded)
i.'
L incompessible layer
4,
[ P, = E§/3h (4)
i
e
\i
. and the second arising from restraints at the bonded interfaces
- 2
:% P2 = ES/4AD(A-1) {5)
1%l
)
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where § is the displacement, calculated from the total stiffness, 3
(]

Equation 3. 5“
b

This comparison is made in Figure 5. Good agreement is seen to 0

hold between values of pressure at the layer center, calculated from

FEM and from the approximate theory,, by,

NS e SR

Cj}hus. the approximate theory is apparently able to
predict the pressures set up in thin incompressible layers with

surprising accuracy.

-~

Up to this point, pressure were evaluated by FEM at the center r;
of the elastic layer, for comparison with predictions of the simple ~§
approximate theory. But the FEM calculations revealed that, although :£
maximum pressures were, indeed, developed on the central axis, they §
were not generally constant through the layer thickness. When the g.
layer was extremely thin, the pressure was approximately uniform <
between the two spheres, Figure 6. But when the layer was thicker; E,
for example, when h/D = 0.1; then the hydrostatic tension near the ‘g

bonded interfaces was significantly larger than in the center of the

S

layer, Figure 8. Thus, for thin layers, failure due to the action of ot
a hydrostatic tension could occur at any point along the axis between :
the two spheres, whereas for thicker layers it is more likely to take .3
place near the bonded surfaces. Experimental studies have shown that \f
Ly
the first cavity appears in relatively thick layers near the bonded ;
interfaces (2). ﬁi
o\
e
v
)
5
-
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(iii) Anisotropy of stresses

FEM computations also revealed that the principal stresses set up
along the center line were not strictly equal. They approached pure
triaxiality for thin layers but for moderately thick ones the axial
stress at the center of the layer was considerably larger than the
radial and tangential stresses (which were roughly equal), Figure 7.
However, near the bonded surfaces the stresses remained substantially
equal, even for thick layers.

We conclude that failure by growth of a pre-existing cavity at a
critical level of triaxial tension will occur first near the bonded
surfaces for moderately thick layers, h/D = 0.1, and somewhat later,
i.e., at a higher applied load, in the central region of the rubber
layer, as observed experimentally (2). But the nature of the second
fracture, and in particular the direction of tear propagation, is
likely to be somewhat different because the stress field is not

isotropic.
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Conclusions

Stiffnesses calculated by FEM for thin incompressible rubber
layers sandwiched between, and bonded to, two rigid spheres are in
good agreement with a previously-derived approximate theory and with
experimental measurements of compression stiffness. However, the
calculated stiffnesses of thin layers are extremely sensitive to the
value chosen for Poisson’s ratio. Small departures from complete
incompressibility bring about large reductions in stiffness.

The highest level of pressure in compression, or dilatant stress
(triaxial tension) in tension, is developed at points near the bonded
surfaces of the spheres for moderately thick rubber layers. This is
the place at which an initial cavity appears when bonded rubber layers
are subjected to tension (2).

Calculations of the radial and tangential stress show that the
stresses in the center are strictly triaxial only for thin layers.

For thicker layers, the axial tensile stress is substantially greater
than the lateral stresses. This feature of the stress distribution
has implications for the direction of tearing when an initial cavity
forms at the center of the rubber layer. The tear will presumably run
at right angles to the major tensile stress; that is, across the axis
of symmetry; and this is the direction observed in practice (2). On
the other hand, cavities formed near the bonded surfaces are in an
isotropic stress field with no preferred direction. In practice, they
propagate along the axis and thus do not lead directly to failure of

the bonded structure.

B e a4 o o™ S o A S Ay o S T o o e T T T VTS =

5 a a_gn

" 9 4

h

N

e e

-

Ay



12 W

Acknowledgements

This work was supported in part by the Office of Naval Research

o -
’_.‘...."..“ .-

(Contract N0O0OO14-85-K-0222) and in part by a grant-in-aid from Lord

i)

Corporation. The authors are also indebted to Professor R.A.Schapery

Bttt

-

of Texas A and M University for helpful suggestions on the analysis of

o

-

bonded layers.

ST -

Fun <L

Polal ot de Jii @y

L

S EEEL . (e

SLTE

TR N N T

-

ODON] , ; AN, .y
tolt DR A e R e S T R RO R Tl X . q . _ A O L Lo b




RN LR YEN

.o g R R U A e Y 08 6% $%2 4% A% 49 AV, At At 2l 28 0.8 4 PR T

13

References

1. A.N.Gent and B.Park, Rubber Chem.Technol. 59, 77 (1986).

2. A.N.Gent and B.Park, J. Materials Sci. 19, 1947 (1984).

3. P.B.Lindley, "Engineering Design With Natural Rubber”, 3rd. Ed.,
NR Technical Bulletin, Natural Rubber Producer’s Research Association,
London, 1870.

4. A.N.Gent and P.B.Lindley, Proc.Roy.Soc.(London) A249, 195 (1958).

5 A.E.Oberth and R.S.Bruenner, Trans.Soc.Rheol. 9, 165 (1965).

6. A.N.Gent and D.A.Tompkins, J.Appl.Phys. 40, 2520 (1969).

7. K=J.Bathe, "ADINA: A Finite Element Program for Automatic Dynamic

Nontipear
IncrementalAAnalysis," Report No. 82448-1, Mass. Inst. Technol.,

Cambridge, Mass., 1977.




Table 1: Stiffness, F/SDE for an incompressible elastic layer

bonded between two spheres of diameter D and initial

separation h.

F/SDE from Difference
ELE ELQEE from FEM approximate theory (1) (per cent)
0.01 40.77 40.90 0.32
0.02 20.916 21.01 0.45
0.05 8.704 8.904 2.24
0.1 4.519 4.749 4,84
0.2 2.399 2.579 6.96
0.5 1.122 1.171 4.13
1 0.648 0.643 -0.86
2 0.358 0.347 -3.32
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Figure Legends

Sketch of the model employed for FEM calculations.
Calculated stiffness F/§ plotted against the value of
Poisson’'s ratio ¢, for various thicknesses h of the
elastic layer relative to the sphere diameter D.
Stiffness F/8§ plotted against the layer thickness h,
relative to the sphere diameter D. The open circles
represent the results of FEM calculations for an
incompressible material. The filled-in circles are
experimentally-measured values for a silicone rubber
layer, E = 2 MPa, (1). The full line represents the
results of a previous approximate theory (1).
Pressure Ec’ developed at the center of an elastic
layer, plotted against the value of Poisson’'s ratio gz,
for various values of the layer thickness h,
the sphere diameter D. Eo denotes the mean applied
stress, given by QELEQZ.

Pressure Ec’ developed at the center of an
incompressible elastic layer, plotted against the layer
thickness h relative to the sphere diameter D. 'Eo
denotes the mean applied stress, given by QELEQZ.

The full curve represents the predictions of a previous
approximate theory (1). The points represent values
calculated by FEM.

Pressure P developed along the central axis, plotted
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against the distance z from the center of an
q: incompressible elastic layer of thickness h. The point
ﬁ: z = h/2 is at the bonded interface. E, denotes the
pressure set up at the center of the layer.
Figure 7. Ratio of the radial stress 9, to the axial stress 9,

4! plotted against the distance z from the center of an

incompressible elastic layer of thickness h.
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